- 5. The blades of a windmill sweep out a circle of area A.
 - a. If the wind flows at a velocity v perpendicular to the circle, what is the mass of the air passing through it in time t?
 - b. What is the kinetic energy of the air?
 - c. Assume that the windmill converts 25% of the wind's energy into electrical energy, and that $A = 30 \text{ m}^2$, v = 36 km/h and the density of air is 1.2 kg m⁻³. What is the electrical power produced?
- Sol. According to the question Area of the circle swept by the windmill = A

Velocity of the wind = v

Density of air = ρ

a. Volume of the wind flowing through the windmill per sec = Av

Mass of the wind flowing through the windmill per sec = ρ Av

Mass m, of the wind flowing through the windmill in time $t = \rho Avt$

b. Kinetic energy of air $= rac{1}{2} m v^2$

$$KE = \frac{1}{2}(\rho Avt)v^2 = \frac{1}{2}\rho Av^3t$$

According to the question , area of the circle swept by the windmill , $A = 30 \text{ m}^2$

Velocity of the wind = v= 36 km/h = 10 m/s

Density of air, ρ = 1.2 kg m⁻³

As per the question, $E_{electric} = E_{wind}$

$$E_{electric} = \frac{25}{100} imes \frac{1}{2} \rho A v^3 t = \frac{1}{8} \rho A v^3 t$$

Electrical power, $P_{electric} = \frac{E_{electric}}{t}$

$$P_{electric} = \frac{1}{8} \frac{\rho A v^3 t}{t} = \frac{1}{8} \rho A v^3$$

$$P_{electric} = \frac{1}{8} \times 1.2 \times 30 \times (10)^3$$

$$P_{electric} = 4.5 \times 10^3 W = 4.5 kW$$